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ABSTRACT

Two multi-variable Rankin-Selberg integrals are studied. They may be

regarded as extending the theory begun in [G-H1]. Each is shown to

be Eulerian with the unramified contribution given explicitly in terms of

partial Langlands L-functions.

1. Introduction

In this paper we consider two Rankin–Selberg integrals which were discovered

by David Ginzburg, and announced in [G-H1]. These integrals are defined on

a split form of GSO2n (see below for precise definition), and involve a generic

cuspidal automorphic representation of this group. We content ourselves with

showing that both integrals unfold to Eulerian integrals involving Whittaker

functions, and computing the contributions from the unramified places. In each

case we get a product of two partial Langlands L functions, at least one of which

is a “Spin” L-function.

Recall that a Langlands L function requires two pieces of data. The first

is an automorphic representation π defined on some group G, from which we

obtain a family, indexed by all but finitely many places of our global field, of

semisimple conjugacy classes in a certain complex Lie group LG. The second

is a finite dimensional representation r of that complex Lie group. Recall also

that the special orthogonal group SO2n is not simply connected, but possesses a
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simply connected double cover, known as the spin group. This group possesses

two fundamental representations, usually called the half-spin representations,

which do not factor through the projection. By a Spin L function, we mean

a Langlands L function in which the role of r is played by either of these two

representations.

In this paper we consider an integral on GSO10 and a similar one on GSO12.

In both cases we unfold the integral and compute the contribution from the

unramified places (being Archimedean is treated as a form of ramification),

obtaining a product of partial Langlands L functions. These are: in the GSO10

case

LS(3s1 − 2s2, π, Spin
−)LS(3s1 + 2s2 − 2, π, Spin+)

and in the GSO12 case

LS(5s2 − 2, π ⊗ χ2, St)L
S(4s1 − 3/2, π ⊗ χ1, Spin).

The reason for considering nontrivial characters in one case but not the other

is explained below.

As the two half-spin representations are related by a symmetry of the Dynkin

diagram, what one can prove about one L function follows for the other, and

so it is customary in the field to refer to either of these L functions as “the”

Spin L function. In this paper we have to be a bit more careful because one of

our integrals yields the product of the two half-spin L functions, and while the

distinction between one and the other may be safely blurred, the distinction

between one of each and two of the same may not.

There are several other known constructions of Spin L functions associated to

representations on even orthogonal groups, along the lines of those in this paper.

The constructions of Ginzburg in [G] give the same Spin L functions we obtain

here by themselves, rather than in a product. In [G-H1] a threefold product was

obtained, of the Standard L function and two copies of the same half-spin, each

with a different complex-variable argument. A close cousin of this construction

was discovered by Wee Teck Gan and studied in [Ga-H]. It is defined on a quasi-

split adjoint group of type D4. In the split case it gives the product of the three

L functions associated to the three 8 dimensional representations of Spin8(C)

i.e., the standard and the two half-spins once each. When G is not split, LG is

more complicated and its action on this 24 dimensional space has one or two

irreducible components. The same construction gives the L function, or product

of two associated to this action. Finally, in [G-H2] a construction is given for
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the L function associated to an automorphic form on the group GSO10×PGL2,

with the representation of LG, which in that case is GSpin10(C)×SL2(C) being

the 32 dimensional tensor product of the Spin representation ofGSpin10(C) and

the standard representation of SL2(C).

Please note that, with the exception of the case in [Ga-H] when the 24 di-

mensional representation of LG is irreducible, all of these L functions have also

been studied via the Langlands–Shahidi method [Sh]. In addition, there is also

a Spin L function associated to automorphic forms on symplectic groups, which

has been studied more extensively. Rather than attempt an independent sur-

vey we refer the reader to those of Professor Bump [Bu1, Bu2], in particular

Section 13 of [Bu2]. In the theory of automorphic forms on symplectic groups,

one encounters a mixture of papers written in “general G” language and pa-

pers written in the classical language of Siegel modular forms. The paper of

Asgari and Schmidt explains the relationships clearly. Note that if Π (defined

on GSO2n) is a weak functorial lift of π (defined on GSp2n−2) associated to the

embedding Spin2n−1(C) →֒ Spin2n(C) then the two partial Spin L functions

of Π agree with one another and with the partial Spin L function of π.

Next we address the question of whether our integrals here might have ap-

plications, relating periods, poles of L functions, and functorial liftings, along

the lines of [G-R-S], [G-H1] and [G-H2]. As applied to our GSO10 integral, this

question may be easily answered in the negative: it is proved in [G] that the L

functions we obtain in that case are always entire (even without the restriction

on central character). For GSO12, on the other hand, what Ginzburg proves

is that LS(s, π ⊗ χ, Spin) can have a simple pole when ωπχ
2 is nontrivial and

quadratic. This is the reason why we allow nontrivial characters in one case and

not the other: for the GSO10 case it is a harmless restriction which simplifies

the notation somewhat, while in the GSO12 case it omits the most interesting

cases from consideration. A possible explanation for this phenomenon arises

naturally in connection to the question we consider here. We remark on the

structure of the proofs in [G-H1] and [G-H2]. In each case we relate three things:

(1) A partial L function or some partial L functions having poles.

(2) The cuspidal representations that appear in them being lifts associated

with the inclusion of the stabilizer of a generic point.

(3) Nonvanishing of a period.
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This motivates the investigation of the stabilizer of a generic point in the Spin

representation of GSpin12(C). Most of the work is done by Igusa [I] who de-

scribes the orbits for the action of Spin12(C) and shows that the stabilizer

of a generic point is isomorphic to SL6(C). One may easily check that in

GSpin there is a second connected component; the stabilizer of a generic point

is isomorphic to SL6(C) ⋊ {±1}. Also, the stabilizer of a generic point in the

standard representation is GSpin11(C) and the intersection of these two groups

is SL5(C) ⋊ {±1}. Note that SLn(C) ⋊ {±1} is essentially the L group of a

quasi-split unitary group. On the L-group side we have the diagram of inclu-

sions:

(1)

SL5(C) ⋊ {±1}
ι1−−−−→ SL6(C) ⋊ {±1}

ι2





y

ι3





y

GSpin11(C)
ι4−−−−→ GSpin12(C)

which indicates which liftings we need to consider. Our integral is best suited to

studying the lifting associated with the composite inclusion, but might also be

used on the right-hand arrow, the bottom arrow having been handled already

in [G-R-S].

In the proofs in [G-H1] and [G-H2], the flow is (2) ⇒ (1) ⇒ (3) ⇒ (2).

The integral representation is a tool for proving the implication (1) ⇒ (3).

Indeed, obtaining the nonvanishing of a period from the integral representation

is immediate, at least if we allow a very vague notion of “period,” as seems

appropriate. However, one will want to identify a period for which (3) ⇒ (2)

is true. To do this, one needs some sort of analytic “handle” on the lifting,

e.g. by the theta correspondence. One will then want to prove (1) ⇒ (3) for

this same period. At present the author is unaware of any such handle on the

liftings associated with the vertical arrows in (1).

For the implication (2) ⇒ (1) we restrict a representation of the L group to

a stabilizer. One of the components is the trivial representation corresponding

to the stabilized point. We need to know that the L functions attached to the

other components of this restriction do not vanish.

Motivated by this, we record the decompositions of the various restrictions.

Both semidirect products have a one-dimensional trivial representation which

we denote by 1 and a nontrivial one-dimensional representation with kernel
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equal to the identity component, which we denote by ε. The remaining rep-

resentations arising here may be described by giving their restrictions to the

identity component: there is only one way for −1 to act. We denote the stan-

dard representation of SLn(C) by Vn.

Restricting St to SL6(C) ⋊ {±1} yields V6 ⊕ V ∗
6 , which is irreducible. When

we restrict further to SL5(C) ⋊ {±1}, we get 1 ⊕ ε ⊕ (V5 ⊕ V ∗
5 ). We insert

parentheses because (V5 ⊕ V ∗
5 ) is a single irreducible representation of the

semidirect product. Similarly, when Spin is restricted to SL6(C) ⋊ {±1}, we

get 1⊕ ε⊕ (
∧2 V6 ⊕

∧4 V6), and restricting further to SL5(C) ⋊ {±1}, we get

1 ⊕ ε⊕ (
∧2

V5 ⊕
∧4

V5) ⊕ (V5 ⊕ V ∗
5 ).

Now let us describe the notation used in the paper and give the precise

statement of the main theorem. We consider the group G = GSO2n generated

by matrices preserving the bilinear form given by the matrix J with ones on the

diagonal running from upper right to lower left, together with matrices of the

form diag(λIn, In). This is a split form of GSO2n. The set of diagonal matrices

in this group is a maximal torus, which we denote by T and the set of upper

triangular matrices in this group is a Borel subgroup B = TU. We define the

notation, e′i,j = ei,j − e2n+1−i,2n+1−j , where ei,j is the matrix with a one in

the i, j entry and zeros elsewhere. For each root α, for the action of T on G,

the one dimensional unipotent subgroup on which T acts by α is the image

of the homomorphism xα(r) = xi,j(r) = I + re′i,j , for some i, j. We denote

this subgroup by Xα or by Xi,j as convenient. We number the simple positive

roots determined by our choice of Borel α1, . . . , αn so that Xαi
= Xi,i+1 for

i = 1, . . . , n − 1, and Xαn
= Xn−1,n+1. We identify the Weyl group with the

group of permutation matrices that are in G, and for i = 1, . . . , n, let w[i] denote

the simple reflection corresponding to the root αi. We shall write w[i1i2 . . . ir]

for w[i1]w[i2] . . . w[ir]. Let M(i1, . . . , ik) denote the standard Levi containing

the subgroups Xαi
, for i = i1, . . . , ik, and let P (i1, . . . , ik) denote the standard

parabolic of which it is a Levi subgroup.

Let Z denote the center of G. Let P = P (1, 2, . . . , n − 1) and when n ≥ 4,

let Q = P (1, 2, 4, . . . , n). Let π denote an irreducible cuspidal representation

of G(A), and ϕ a vector in the space of π. We consider two integrals, which

correspond to the cases n = 5 and n = 6. When n = 5, we assume that the

central character ωπ of π is trivial, while when n = 6 we do not. When n = 5,

we let EQ(g, s1) denote the Eisenstein series on G(A) associated to the induced
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representation Ind
G(A)
Q(A)δ

s1
Q , and EP (g, s2) the one associated to the induced

representation Ind
G(A)
P (A)δ

s2
P . We consider the integral

(2)

∫

Z(A)G(F )\G(A)

ϕ(g)EQ(g, s1)EP (g, s2)dg.

When n = 6, the integral is much the same except that we allow π to have

nontrivial central character, and allow nontrivial characters in the Eisenstein

series as well. It has the form

(3)

∫

Z(A)G(F )\G(A)

ϕ(g)EQ(g, χ′
1)EP (g, χ′

2)χ
′
3(λ(g))dg,

where λ is the rational character of G giving the similitude factor, and χ′
i are

quasicharacters chosen so that the integrand is Z(A)-invariant. See Section 4

for precise notation.

As a final piece of notation, we will need to fix a character of F\A, which we

will denote by ψ. We then define a character, also denoted by ψ, of the group

U by ψ(u) = ψ(u1,2 + · · · + un−1,n + un−1,n+1). We let Wϕ denote the image

of ϕ in the (U,ψ)-Whittaker model of π. Our integral will be zero unless Wϕ is

nonzero, so we assume π is generic.

The L-group of GSO2n is GSpin2n(C). For n = 5 we assume the central

character is trivial and hence may work with Spin10(C) instead. We let Spin−

and Spin+ denote the 16 dimensional representations of this group whose high-

est weights are the fourth and fifth fundamental weights, respectively. When

n = 6, we specify a representation of GSpin12(C) by describing the action of

Spin12(C) and the scalars. Specifically, we let St be the 12 dimensional rep-

resentation where Spin12 acts by the standard representation and scalars act

trivially. We let Spin denote the representation where Spin12(C) acts by the

representation associated to the fifth fundamental weight and scalars act by

multiplication.

Our main theorem is then as follows,

Theorem: When n = 5, (resp., 6) the integral (2) (resp., (3)) unfolds to give

an Eulerian integral involving the Whittaker function Wϕ. When n = 5, the

contribution from the unramified places is the quotient of

LS(3s1 − 2s2, π, Spin
−)LS(3s1 + 2s2 − 2, π, Spin+)
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by the product of the normalizing factors of the two Eisenstein series, and when

n = 6 it is the quotient of

LS(5s2 − 2, π ⊗ χ2, St)L
S(4s1 − 3/2, π ⊗ χ1, Spin)

by the product of the normalizing factors of the two Eisenstein series.

Here the term normalizing factor is used as follows: the poles of an Eisen-

stein series are determined by the constant term, which is given in terms of

intertwining operators which factor over the places. At an unramified place

this intertwining operator takes the normalized spherical vector to a multiple

of the normalized spherical vector, with the multiplier being given by a ratio

of products of local zeta functions. Taking the product over all the unramified

places we obtain a ratio of products of partial zeta functions. The normalizing

factor is the product appearing in the denominator.

We now describe the format of the paper. Sections 2 and 3 are devoted to

the case n = 5, with Section 2 being the unfolding and Section 3 being the

unramified computation. Similarly, Sections 4 and 5 are the unfolding and

unramified computation in the case n = 6 respectively.

The author would like to express his deep gratitude to David Ginzburg, who

suggested the integrals, communicated the unfolding for the GSO10 case, and

provided invaluable help and advice at many times throughout the course of

the work. He also wishes to thank Christian Krattenthaler for pointing out the

work of Okada and thus greatly ameliorating the material in Section 3, and to

thank the referee for helpful suggestions. This research was completed while the

author was at Penn State University and the Tata Institute for Fundamental

Research. He would like to thank these institutions for the excellent working

environment.

2. The GSO10 Integral

The unfolding in this case was communicated by Ginzburg. Any mistakes are

the author’s own. For g ∈ G(A), fQ,s1 ∈ Ind
G(A)
Q(A)δ

s1
Q and fP,s3 ∈ Ind

G(A)
P (A)δ

s2
P

we define

(4)

fRQ,s1(g) :=

∫

A4

fQ,s1(w[3254]x23(r1)x45(r2)x46(r3)x27(r4)g)ψ
−1(r1+r2+r3)dri
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and

(5) fLP,s2(g) :=
∫

A6

fP,s2(w[532143]x12(l1)x34(l2)x14(l3), x15(l4)x35(l5)x18(l6)g)ψ
−1(l1+l2)dli

The main result of this section is the following

Theorem 2.1: For Re(si) large, we have

(6)

∫

Z(A)G(F )\G(A)

ϕ(g)EQ(g, s1)EP (g, s2)dg =

∫

Z(A)U(A)\G(A)

Wϕ(g)fRQ,s1(g)f
L
P,s2(g)dg

Proof. We unfold the two Eisenstein series and obtain
∑

w∈Q\G/P

∫

(P (F )∩w−1Q(F )w)\G(A)

ϕ(g)fs1(wg)fs2(g)dg.

By the Bruhat decomposition, every double coset inQ\G/P contains an element

of the Weyl group of G. The Weyl group of G may be identified with the

set of permutations with sign 1 such that w(11 − i) = 11 − w(i) for all i.

From the block structure of P and Q we see that there are four elements of

Q\G/P corresponding to the four possible values of #{i : i ≤ 5, w(i) ≤ 3}.

For each double coset we choose the shortest element of the Weyl group in

that coset as a representative. Then the unipotent radical of P (2, 3, 4, 5) is

contained in (P (F ) ∩ w−1Q(F )w) for every coset but one. By cuspidality, all

those integrals vanish. Our representative for the remaining coset is w0 =

w[321532435]. The group (P (F ) ∩ w−1
0 Q(F )w0) consists of M(1, 3, 4) and the

7 dimensional unipotent group containing Xij for i = 1, 2, j = 3, 4, 5, as well

as (1, 9). We make the change of variables g 7→ w[534]g. The effect on the

domain of integration is to conjugate the “denominator” (P (F )∩w−1
0 Q(F )w0)

by w[435]. The group M(1, 3, 4) maps to M(1, 3, 5) and the unipotent subgroup

now contains Xij for i = 1, 2, j = 5, 7, 8, 9.

Next we perform a Fourier expansion of ϕ along the three dimensional unipo-

tent subgroup X35X45X47. Together with the unipotent subgroup we already

have, this forms U(1, 2, 3, 5), hence the term corresponding to the trivial char-

acter vanishes. The action of M(1, 3, 5) by conjugation permutes the remaining

terms transitively. We choose as a representative ψ1(u) = ψ(u45), which may
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also be viewed as a character of U(1, 2, 3, 5). The stabilizer of ψ1 contains the

two dimensional unipotent group X34X36 and a subgroup M1 of M(1, 5) iso-

morphic to GL1 ×GL2 ×GL2. Thus, (2) is equal to

(7)

∫

Z(A)N1(A)M1(F )\G(A)

fs1(w2g)fs2(w1g)ϕ
U1,ψ1(g)dg,

where U1 = U(1, 2, 3, 5)X34X36, and N1 is the product of X34X36 and the seven

dimensional unipotent group above.

Next, we make the change of variables g 7→ w[21]g. When N1 is conjugated by

w[12], X34X36 is sent to to X14X16. We expand along X12X13. The nontrivial

characters are permuted transitively by the action of M1 on this group, while

the trivial character contributes zero by cuspidality. We take the character

x12(r1)x13(r2) 7→ ψ(r1) as a representative. The stabilizer contains X23, and a

reductive part M2 isomorphic to GL2
1 × GL2. We then expand along X24X26,

choosing this time x24(r1)x26(r2) 7→ ψ(r1) as our representative for the nontriv-

ial orbit. The stabilizer contains X46. Factoring the integration over X23X46,

we have shown that (7) is equal to

(8)

∫

Z(A)N3(A)M3(F )\G(A)

fs1(w2g)fs2(w1g)ϕ
U3,ψ3(g)dg,

where N3 = X23X46X14X16w[12]N1w[21], U3 is the unipotent subgroup con-

taining all positive root spaces except X34 and X36, ψ3(u) = ψ(u12 +u24 +u45),

and M3
∼= GL3

1 is the stabilizer of ψ3 in T.

We change variables g 7→ w[34]g. The group w[43]U3w[34] consists of X54 and

the group V4 which is the product of every positive root space except (4, 5), (4, 6)

and (3, 5). If ψ4(u)ψ3(w[34]uw[43]) for u = vx54(r) ∈ w[43]U3w[34] ψ4(v) =

ψ4(u) = ψ(u12 + u23 + u34). Clearly, ϕU3,ψ3(w[34]g) = ϕw[43]U3w[34],ψ4(g). We

express this as an integral over X54 and one over the group V4. generated by all

the other root spaces. Then, we expand ϕ along X35:

∑

ξ∈F

∫

(F\A)2

∫

V4(F )\V4(A)

ϕ(x35(r)vx54(r
′)g)ψ4(v)ψ(αr)dvdrdr′ .

As ϕ is left G(F )-invariant, we may introduce x54(α) at the far left. Now

x54(α)x35(r) = x35(r)x34(αr)x54(α). We conjugate x54 to the right, and after

suitable changes of variable, we obtain
∫

A

ϕU4,ψ4(x54(r
′)g)dr′.
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Where U4 = X35V4 and we extend the character ψ4 trivially. The root space

X54 is in w[43]N3[w34], so we may collapse the integration. We now have

(9)

∫

Z(A)N5(A)M4(F )\G(A)

fs1(w[3254]g)fs2(w[5342134]g)ϕU4,ψ4(g)dg,

where N4 is obtained by deleting the root space X54 from w[43]N3w[34], U5 is

the product of all the positive root spaces except X45 and X46, and M4 is the

stabilizer of ψ4 in T . We observe that w[5342134] = w[2532143]. The leading

two can be deleted as fs2 is P (F )- invariant. Finally, we expand along X45 and

X46, and then factor the unipotent integration N4\U, to obtain the right-hand

side of (6).

3. The Unramified Computation for GSO10

We now consider the local unramified integral which results from (9). In this

section F will denote a non-archimedean local field, π an unramified irreducible

representation of G(F ), with trivial central character, and fRQ,s1 and fLP,s2 will

denote the local analogues of the global functionals defined above. Also, in

this section we work exclusively with F points of our various algebraic groups

(G, T, Z, etc.) and hence may suppress the “(F )” from the notation.

The integral we consider is

(10)

∫

ZU\G

Wπ(g)fRQ,s1(g)f
L
P,s2(g)dg.

The main result of this section is

Proposition: For all unramified data and Re(si) sufficiently large, the integral

(10) is equal to

L(3s1 − 2s2, π, Spin
−)L(3s1 + 2s2 − 2, π, Spin+)

ζ(6s1)ζ(6s1 − 1)2ζ(6s1 − 2)ζ(12s1 − 4)ζ(8s2)ζ(8s2 − 2)
.

The denominator here matches the product of the normalizing factors of the

two Eisenstein series exactly.

Proof. By the Iwasawa decomposition, (10) equals

(11)

∫

Z\T

Wπ(t)fRQ,s1(t)f
L
P,s2(t)δ

−1
B (t)dt.
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We now compute fRQ,s1(t), which is defined by

(12)

fRQ,s1(t) :=

∫

F 4

fQ,s1(w[3254]x23(r1)x45(r2)x46(r3)x27(r4)t)ψ
−1(r1+r2+r3)dri.

The integration in r4 gives an intertwining operator from IndGQδ
s1
Q to IndGBχs1

where

χs1(diag(t1, t2, t3, t4, t5, t6, . . . )) = |t21t
2
2t

2
4t

−3
5 t−3

6 |3s1
∣

∣

∣

t3
t4

∣

∣

∣
.

Let f◦
χs1

denote the normalized spherical vector in this latter space. Then by a

well-known calculation we get

(13) fRQ,s1(t) :=

ζ(6s1 − 1)

ζ(6s1)

∫

F 3

f◦
χs1

(w[254]x23(r1)x45(r2)x46(r3)t)ψ
−1(r1 + r2 + r3)dri.

Each of the roots α2, α4, α5 defines an embedding of SL2 into G. As no two

of these roots are connected, the images of SL2 commute. Put differently, we

obtain an embedding of SL3
2 into G. The integration in the remaining three

variables essentially gives Whittaker functionals on our three SL2’s.

More explicitly, beginning from (13) we conjugate t to the right, and make a

change of variables in the ri. We now need to evaluate the integral
∫

F 3

f◦
χs1

(w[245]x23(r1)x45(r2)x46(r3))ψ
−1
( t2
t3
r1 +

t4
t5
r2 +

t4
t6
r3

)

dri.

We split the integration in r3 into an integral over the ring of integers o and

one over F − o. The first contributes
∫

F 2

f◦
χs1

(w[24]x23(r1)x45(r2))ψ
−1
( t2
t3
r1 +

t4
t5
r2

)

dr1dr2

∫

o

ψ−1
( t4
t6
r3

)

dr3,

while the second gives
∫

F 2

∫

F−o

f◦
χs1

(

w[24]x23(r1)x45(r2)x46(r
−1
3 )α̌5(r

−1
3 )
)

ψ−1(
t2
t3
r1+

t4
t5
r2+

t4
t6
r3)dri,

where α̌5(r
−1
3 ) = diag(1, 1, 1, r−1

3 , r−1
3 , r3, r3, 1, 1, 1). This, in turn, is equal to

∫

F 2

f◦
χs1

(w[24]x23(r1)x45(r2))ψ
−1
( t2
t3
r1 +

t4
t5
r2

)

dr1dr2

×

∫

F−o

|r3|
6s1−1ψ−1

( t5
t7
r3

)

dr3.
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The other variables behave similarly. Since
∫

o

ψ−1(τr)dr +

∫

F−o

|r|6s1−1ψ−1(τr)d =
ζ(6s1 − 2)

ζ(6s1 − 1)

(

1 − |τ |6s1−2 q−6s1+2
)

,

overall we get

ζ(6s1 − 2)3

ζ(6s1)ζ(6s1 − 1)2

(

1 −
∣

∣

∣

t2
t3

∣

∣

∣

6s1−2

q−6s1+2
)(

1 −
∣

∣

∣

t4
t5

∣

∣

∣

6s1−2

q−6s1+2
)

×
(

1 −
∣

∣

∣

t4
t6

∣

∣

∣

6s1−2

q−6s1+2
)

|t61t
6
3t

−6
4 t−3

5 t−3
6 |s1 |t22t

−1
3 t34t

−2
5 t−2

6 |.

The computation of fLP,s2 is similar. In this case, the integrals in l3 to l6 give

intertwining operators, and the integrals in l1 and l2 give Whittaker functionals

on embedded SL2’s. The outcome is

fLP,s2(t) =
ζ(8s2 − 4)2

ζ(8s2)ζ(8s2 − 2)

(

1 −
∣

∣

∣

t1
t2

∣

∣

∣

8s2−4

q−8s2+4
)

×
(

1 −
∣

∣

∣

t3
t4

∣

∣

∣

8s2−4

q−8s2+4
)

|t−4
1 t42t

−4
3 t4t

2
5t

−2
6 |s2 |t41t

−1
2 t33t

−2
4 t−3

5 t−1
6 |.

Also

δB(t) =
t81t

6
2t

4
3t

2
4

t105 t
10
6

.

Let τi = ti/ti+1, i = 1 to 4 and τ5 = t4/t6. Then the variables τi define coordi-

nates on Z\T. Let Kπ(t) = Wπ(t)δB(t)−1/2. Then we have shown that (11) is

equal to

(14)
ζ(6s1 − 2)3ζ(8s2 − 4)2

ζ(6s1)ζ(6s1 − 1)2ζ(8s2)ζ(8s2 − 2)

∫

Z\T

Kπ(t)η(t)dt,

where

η(t) =
∏

i=2,4,5

(1 − |τip|
6s1−2)

×
∏

i=1,3

(1−|τip|
8s2−4)|τ1|

6s1−4s2 |τ2|
6s1−2|τ3|

12s1−4s2−2|τ4|
3s1−2s2 |τ5|

3s1+2s2−2.

Next, we use the Casselman-Shalika formula. Let ni denote the valuation of

τi, so that |τi| = q−ni . Then the Casselman-Shalika formula states first that

Kπ(t) is zero if any of the ni is negative, and that if they are all positive,

then it is equal to the trace of the irreducible representation of Spin10(C) with

highest weight
∑

i ni̟i, where ̟i is the ith fundamental weight, evaluated at

the semisimple conjugacy class associated to the local unramified representation
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π. Finally, we let x = q−3s1+1, y = q−2s2+1. Putting all of this together, we find

that the integral in (14) is equal to

∞
∑

ni=0

(n1, n2, n3, n4, n5)
∏

i=2,4,5

(1 − x2(ni+1))

×
∏

i=1,3

(1 − y4(ni+1))x2n1+2n2+4n3+n4+n5y−2n1−2n3−n4+n5 .

It follows from the result of Brion (see [Br] and also [G] p. 781) that

L(3s1 + 2s2 − 2, π, Spin+) =

∞
∑

m1,m5=0

(m1, 0, 0, 0,m5)(xy)
2m1+m5

L(3s1 − 2s2, π, Spin
−) =

∞
∑

k1,k4=0

(k1, 0, 0, k4, 0)(xy−1)2k1+k4 .

The proposition is now reduced to the identity

(15)
∞
∑

ni=0

(n1, n2, n3, n4, n5)
∏

i=2,4,5

1 − x2(ni+1)

1 − x2

∏

i=1,3

1 − y4(ni+1)

1 − y4
y−2n1−2n3−n4+n5

=(1 − x2)(1 − x4)

×

∞
∑

mi,ki=0

(m1, 0, 0, 0,m5)(k1, 0, 0, k4, 0)x2m1+m5+2k1+k4y2m1+m5−2k1−k4 .

The method of proof is as in [G-H2]. Let

P (u) = (1 − u8) + (u6 − u2)(1, 0, 0, 0, 0) + u3(0, 0, 0, 1, 0)− u5(0, 0, 0, 0, 1),

P ′(u) = (1 − u8) + (u6 − u2)(1, 0, 0, 0, 0) + u3(0, 0, 0, 0, 1)− u5(0, 0, 0, 1, 0).

Then

P (xy)L(3s1 + 2s2 − 2, π, Spin+) =
∞
∑

m=0

(0, 0, 0, 0,m)(xy)m

P ′(xy−1)L(3s1 − 2s2, π, Spin
−) =

∞
∑

k=0

(0, 0, 0, k, 0)(xy−1)k.

We multiply the left hand side of (15) by P ′(xy−1).

Lemma: The outcome is

(16)

∞
∑

ni=0

(n1, n2, n3, n4, n5)
1 − x2(n5+1)

1 − x2
x2n1+2n2+4n3+n4+n5y2n1+2n3−n4+n5 .
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Proof of Lemma: We denote the weight
∑

i ni̟i by n. Let

ℓ1(n) = 2n1 + 2n2 + 4n3 + n4 + n5,

ℓ2(n) = 2n1 + 2n3 − n4 + n5.

Let

hn(x, y) = xℓ1(n)yℓ2(n)
∏

i=1,3

(1 − y−4(ni+1))
∏

i=2,4,5

(1 − x2(ni+1)),

which, up to a factor of (1−x2)3(1−y−4)2, is the coefficient of (n1, n2, n3, n4, n5)

in (15), for ni ≥ 0. Also, if any of the ni is −1, then hn(x, y) = 0. It follows

that the coefficient of (n1, n2, n3, n4, n5) in

P ′(xy−1)

∞
∑

ni=0

(n1, n2, n3, n4, n5)hn(x, y)

is

(1 − x8y−8)hn(x, y) + (x6y−6 − x2y−2)
∑

w∈Γ1

hn−w(x, y)

+ x3y−3
∑

w∈Γ5

hn−w(x, y) − x5y−5
∑

w∈Γ4

hn−w(x, y),

where Γi denotes the set of weights of the representation with highest weight

̟i. Let

Hw = x−ℓ1(w)y−ℓ2(w)(1 − Y1y
4w1−4)(1 −X2x

2−2w2)(1 − Y3y
4w3−4)

× (1 −X4x
2−2w4)(1 −X5x

2−2w5).

Then the lemma is equivalent to the identity

(1−x8y−8)H0 +(x6y−6 −x2y−2)
∑

w∈Γ1

Hw +x3y−3
∑

w∈Γ5

Hw−x5y−5
∑

w∈Γ4

Hw

= (1 − x2)2(1 − y−4)2(1 − x4)(1 −X5x
2).

This is just an identity of polynomials (with y−1 being one of the variables),

and may be verified by the computer algebra system of your choice.

Now we multiply (16) by P (xy).
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Lemma:

(17)

P (xy)

∞
∑

ni=0

(n1, n2, n3, n4, n5)
1 − x2(n5+1)

1 − x2
x2n1+2n2+4n3+n4+n5y2n1+2n3−n4+n5

×
∞
∑

n2,n4,n5=0

(0, n2, 0, n4, n5)x
2n2+n4+n5y−n4+n5 .

Proof of Lemma: Let h′n(x, y) = xℓ1(n)yℓ2(n)(1 − x2(n5+1)).

The coefficient of (n1, n2, n3, n4, n5) on the left hand side of (17) is

(1 − x8y8)h′n + (x6y6 − x2y2)
∑

w∈Γ
n

1

h′n−w + x3y3
∑

w∈Γ
n

4

h′n−w − x5y5
∑

w∈Γ
n

5

h′n−w,

where

Γ
n
i = {w ∈ Γi : wi ≤ ni, i ≤ 4}.

(Note that |wi| ≤ 1 for all i, and all w under consideration. It is not neces-

sary to exclude the terms with w5 > n5 from our sum, because these terms

vanish anyway.) We must show that this sum is 0 if n1 or n3 is nonzero, and

(1 − x2)xℓ1(n)yℓ2(n) otherwise.

Let

H ′
w(x, y,X5) = x−ℓ1(w)y−ℓ2(w)(1 −X5x

2−2w5),

so that

h′n−w(x, y) = xℓ1(n)yℓ2(n)H ′
w(x, y, x2n5).

For each σ ∈ {0, 1}4 we define

Γσi = {w ∈ Γi : σi = 1 ⇔ wi = 1}.

Let

Qσ = (1 − x8y8)H ′
0 + (x6y6 − x2y2)

∑

w∈Γσ
1

H ′
w + x3y3

∑

w∈Γσ
4

H ′
w − x5y5

∑

w∈Γσ
5

H ′
w.

Then lengthy but straightforward computation shows that

Qσ(x, y,X5) =











1 − x2 σ = (0, 0, 0, 0), (1, 0, 1, 0)

−1 + x2 σ = (1, 0, 0, 0), (0, 0, 1, 0)

0 otherwise.

The result follows.
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Equation (15) is now reduced to

(18) (1 − x2)−1
∞
∑

n2,n4,n5=0

(0, n2, 0, n4, n5)x
2n2+n4+n5y−n4+n5

=

∞
∑

m5,k4=0

(0, 0, 0, k4, 0)(0, 0, 0, 0,m5)x
k4+m5y−k4+m5 .

This, in turn, follows from the identity

(0, 0, 0, k4, 0)(0, 0, 0, 0,m5) =
∑

a,b,c:a+min(b,c)≤min(k4,m5)
b−c=k4−m5

(0, a, 0, b, c).

which is due to Okada [O]. See also [K].

4. The Global Integral for GSO12

In this integral, we will allow nontrivial characters. Observe that now the Satake

parameters may not be in Spin12(C) ⊂ GSpin12(C).

We define a rational character d3 of MQ by

d3

( g
h

∗

)

= det g.

Here ∗ is defined by the condition that this matrix is in GSO12. Let P denote

the Siegel parabolic. We define a rational character d6 of MP by

d6 ( g1 g2 ) = det g1.

Then the lattice of rational characters of Q (resp., P ) is generated by d3 (resp.,

d6) and the similitude factor λ, which is a rational character of GSO12. We fix

two characters χ1 and χ2 of F\A, and let s1 and s2 be complex variables. We

define three quasicharacter- valued variables depending on this data:

χ′
1(r) =|r|8s1χ2

1(r)ωπ(r)

χ′
2(r) =|r|5s2χ2(r)

χ′
3(r) =|r|−12s1−15s2χ−3

1 (r)χ−3
2 (r)ω−2

π (r).

Then we consider two Eisenstein series:

EQ(g, χ′
1), associated with Ind

G(A)
Q(A)(χ

′
1 ◦ d3),

and

EP (g, χ′
2), associated with Ind

G(A)
P (A)(χ

′
2 ◦ d6).
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We let fχ′
1

and fχ′
2

denote the vectors in these induced spaces, respectively. The

integral we consider is

(19)

∫

Z(A)G(F )\G(A)

ϕ(g)EQ(g, χ′
1)EP (g, χ′

2)χ
′
3(λ(g))dg.

(Observe that the integrand is indeed Z(A)- invariant.)

Let

(20) fRχ′
1
(g) =

∫

A7

fχ′
1
(w[3423156]x12(r1)x14(r2)x18(r3)x34(r4)x38(r5)x56(r6)x57(r7)g)

× ψ(r1 + r4 + r6 + r7)dri,

and let

fLχ′
2
(g) =

∫

A8

fχ′
2
(w[643524]x21(l1)x13(l2)x23(l3)x25(l4)x26(l5)x29(l6)x45(l7)x46(l8)g)

× ψ(l3 + l7)dli.

Then we prove

Proposition: The integral (19) is equal to

(21)

∫

Z(A)U(A)\G(A)

Wϕ(g)fRχ′
1
(g)fLχ′

2
(g)χ′

3(λ(g))dg.

Proof. We unfold the two Eisenstein series, and analyze the contributions from

the double cosets Q\G/P. As before, all but one of them contribute zero to the

integral. For the one that does not, we choose as a representative the element

w0 = w[346234512346]. We obtain,

(22)

∫

Z(A)M0(F )N0(F )\G(A)

ϕ(g)fχ′
1
(w0g)fχ′

2
(g)χ′

3(λ(g))dg,

where M0 = M(1, 2, 4, 5) and

N0 =





























I C1 C2

I

I C∗
1

I











: C1, C2 ∈Mat3×3



















,
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and C∗
1 is defined by the condition that this matrix is in G, which also puts

conditions on C2.

Next, we conjugate by w1 = w[546]. This takes M0 to M(1, 2, 4, 6), and N0

to the product of the groups Xij , where i ≤ 3 and j = 6 or j ≥ 8.

Next, we expand ϕ along X46X48X56. The term corresponding to the trivial

character is the constant term of ϕ along P (1, 2, 3, 4, 6), hence it contributes

zero. The group M(4, 6) permutes the remaining characters transitively. We

choose as a representative the character ψ(u56). Its stabilizer contains X45X47.

We factor the integration over this group, obtaining

(23)

∫

Z(A)M1(F )N1(F )\G(A)

ϕ(g)U1,ψU1fχ′
1
(w0w

−1
1 g)fχ′

2
(w−1

1 g)χ′
3(λ(g))dg,

where N2 = X45X47w1N0w
−1
1 , U1 = X45X47UP (1,2,3,4,6), the character ψU1

is given by ψU1(u) = ψ(u56), and M1
∼= GL3 × GL1 × GL2 is a subgroup of

M(1, 2, 6) given by a relation between the similitude factor and the determinant

of the GL2 component.

Next, we conjugate by w2 = w[123]. This takes M(1, 2, 6) to M(2, 3, 6), and

U1 to X1,5X1,7UP (1,2,3,4,6). We then expand ϕ along X12X13X14. The con-

stant term contains integration corresponding to the constant term of ϕ along

P (2, 3, 4, 5, 6), and the remaining terms are permuted transitively by w2M1w
−1
2 .

We choose as a representative ψ(u) = ψ(u12). The stabilizer contains X23X24.

We factor the integration over this group, and obtain

(24)
∫

Z(A)M2(F )N2(F )\G(A)

ϕ(g)U2,ψU2 fχ′
1
(w0w

−1
1 w−1

2 g)fχ′
2
(w−1

1 w−1
2 g)χ′

3(λ(g))dg,

where U2 = X23X24UP (2,3,4,5), ψU2(u) = ψ(u12 + u56), M2 is a subgroup of

M(3, 6) isomorphic to GL1 ×GL2 ×GL2, and N2 is the product of the groups

Xij for the following pairs (i, j) : (1, 5), (1, 7), (1, 9), (1, 10), (1, 11), (2, 3), (2, 4),

and 2 ≤ i ≤ 4, j = 6 or 8 ≤ j ≤ 12 − i.

Next, we expand ϕ along X25X27. The constant term contributes zero by

cuspidality. The other characters are permuted transitively by the copy of GL2

containing X57, and the stabilizer of the character ψ(u) = ψ(u25) contains X57.

We factor the integration over this group, and obtain

(25)
∫

Z(A)M3(F )N3(F )\G(A)

ϕ(g)U3,ψU3 fχ′
1
(w0w

−1
1 w−1

2 g)fχ′
2
(w−1

1 w−1
2 g)χ′

3(λ(g))dg,
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where U3 = X57UP (3,4,6), ψU3(u) = ψ(u12 + u25 + u56), M3 is a subgroup of

M(3) isomorphic to GL2 ×GL1, and N3 = X5,7N2.

The next step is to prove the identity

(26) ϕU3,ψU3 (g)

=

∫

U ′
3(F )\U ′

3(A)

∫

(F\A)3

∫

A3

ϕ(x32(t1)x54(t2)x35(t3)u
′x13(r1)x23(r2)x46(r3)g)

× ψU3(u
′)dridtidu

′,

where U ′
3 is the group generated by all the one parameter subgroups Xij con-

tained in U3, except X13, X23, and X46, and we treat ψU3 as a character of U ′
3

by restriction. This is done via arguments completely analogous to those before

(9) in Section 2.

Plugging (26) into (25), and making a change of variables in g, we obtain

(27)
∫

Z(A)M3(F )N ′
3(F )\G(A)

(

∫

(F\A)3

∫

U ′
3(F )\U ′

3(A)

ϕ(x32(t1)x54(t2)x35(t3)u
′g)du′dti

×

∫

A

fχ′
1
(w0w

−1
1 w−1

2 x13(r1)g)fχ′
2
(w−1

1 w−1
2 x13(r1)g)dr1

)

χ′
3(λ(g))dg,

where N3 = X23X46N
′
3. (It is, perhaps, worth noting that X32X35X54U

′
3 is not

a group.)

We conjugate by w3 = w[1254], which takes X32 to X13, X35 to X14, X54 to

X46, and U ′
3 to the subgroup of U consisting of the product of all Xij except

(i, j) = (1, 2); (1, 3); (1, 4); (1, 6); (1, 8); (4, 6); (5, 6); (5, 7). It also takes M3 to

a group containing a copy of GL2 embedded so that the image of ( 1 r
1 ) is

x16(r). Note that X57 = X68. We expand on X18X68. The trivial character

contributes zero, the remaining characters are permuted by our GL2, and the

stabilizer of ψ(u57) contains X16. We factor this integration. We also note that

w0w
−1
1 w−1

2 x13(r1)w2w1w
−1
0 ⊂ Q. We get

(28)

∫

Z(A)M4(F )N4(F )\G(A)

ϕ(g)U4,ψU4fχ′
1
(w0w

−1
1 w−1

2 w−1
3 g)

×

∫

A

fχ′
2
(w−1

1 w−1
2 x13(r1)w

−1
3 g)dr1χ

′
3(λ(g))dg,

where U4 is the subset of U containing all theXij except (i, j) = (1, 2) and (5, 6),

M4 = {diag(a, b, b, b, b, c, b, c, c, c, c, a−1bc)}, ψU4(u) = ψ(u23 + u34 + u45 + u57),
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and N4 is the product of the Xij for the following (i, j): i = 1 or 3, j ≥ 5,

except 8; i = 2 or 4, j = 7, 8, and (2, 4) and 2, 10.

Finally, we expand ϕ on X12 and X56, and factor the integration over

N4(A)\U(A). Plugging in

w0w
−1
1 w−1

2 w−1
3 = w[43423156],

and

w−1
1 w−1

2 w−1
3 = w[13643524],

as well as w3x13(r1)w
−1
3 = x21(r1), yields (21).

5. The Unramified Calculation for GSO12

We now consider the local unramified integral which results from (21). In this

section F will denote a non-archimedean local field, π an unramified irreducible

representation of G(F ), with trivial central character, and fRχ′
1

and fLχ′
2

will

denote the local analogues of the global functionals defined above. As in Section

2.1, we suppress the “(F )” from the notation. The integral we consider is

(29)

∫

ZU\G

Wπ(g)fLχ′
1
(g)fRχ′

2
(g)χ′

3(λ(g))dg.

The main result of this section is

Proposition: The integral (29) is equal to

(30)
L(5s2 − 2, π ⊗ χ2, St)L(4s1 −

3
2 , π ⊗ χ1, Spin)

N(s)

N(s) =L(8s1, χ
2
1ωπ)L(8s1 − 1, χ2

1ωπ)L(8s1 − 2, χ2
1ωπ)

2L(16s1 − 6, χ4
1ω

2
π)

× L(10s2, χ
2
2)L(10s2 − 2, χ2

2)L(10s2 − 4, χ2
2).

Once again, the denominator matches the product of the normalizing factors

of the Eisenstein series exactly.

Proof. As before, we invoke the Iwasawa decompostion and compute fRχ′
1

and

fLχ′
2
. We omit many details, but remark that the addition of characters does

not make matters more complicated: since we assume all data is unramified,

we may define ui, i = 1, 2 so that χ′
i(r) = |r|ui . The only new wrinkle is the
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handling of the variables l1 and l2 in the definition of fLχ′
2
, which is as follows:

fLχ′
2
(t) is equal to

∫

F 8

fχ′
2
(w[643524]x21(l1)x23(l3)x25(l4)x26(l5)x29(l6)x45(l7)x46(l8)t)

ψ(r1l2 + l3 + l7)dri.

The integration in l1 amounts to taking the Fourier transform in this variable.

The function l1 7→ fχ′
2
(w[643524]x21(l1)h) is easily seen to be L1 and L2 for

s2 sufficiently large by plugging in the Iwasawa decomposition of x21(l1) and

noting that the smooth function fχ′
2

is bounded on the compact set Kh. The

integration in l2 then gives the value of the original function at 0. Other than

this the computation is the same as before. The outcome is

fRχ′
1
(t) =

L(8s1 − 3, χ2
1ωπ)

4

L(8s1, χ2
1ωπ)L(8s1 − 1, χ2

1ωπ)L(8s1 − 2, χ2
1ωπ)

2

×
(

1 − χ′′
1

( t1
t2
p
))(

1 − χ′′
1

( t3
t4
p
))(

1 − χ′′
1

( t5
t6
p
))(

1 − χ′′
1

( t5
t7
p
))

χ′
1 ◦ d3(w[3423156]tw[6513243])

∣

∣

∣

t31t
2
3t

4
5

t2t24t
3
6t

3
7

∣

∣

∣,

fLχ′
2
(t) =

L(10s2 − 4, χ2
2)

2

L(10s2, χ2
2)L(10s2 − 2, χ2

2)

∣

∣

∣

t42t
3
4

t3t25t
3
6t7

∣

∣

∣
χ′

2 ◦ d6(w[643524]t)

×
(

1 − χ′′
2

( t2
t3
p
))(

1 − χ′′
2

( t4
t5
p
))

.

Where p is a uniformizer, and we have introduced the notation χ′′
1(r)=χ′

1(r)|r|
−3 ,

and χ′′
2(r) = χ′

2(r)|r|
−4 .

While our full integrand is Z-invariant, the individual terms that make it up

are not. So, to be quite explicit, we replace the integral over Z\T with one over

the subgroup of T consisting of elements of the form

t = (τ1τ2τ3τ4τ5τ6, τ2τ3τ4τ5τ6, τ3τ4τ5τ6, τ4τ5τ6, τ5τ6, τ6, τ5, . . . ),

which maps isomorphically onto Z\T. We let Kπ(t) = Wπ(t)δB(t)−1/2. Then

the above choice of subgroup will be convenient when we to evaluate Kπ(t).



124 J. HUNDLEY Isr. J. Math.

We also get

δB(t) = |τ10
1 τ18

2 τ24
3 τ28

4 τ15
5 τ15

6 |.

d3(w[3423156]tw[6513243]) = τ2τ3τ
2
4 τ

2
5 τ

2
6 ,

d6(w[643524]tw[425346]) = τ1τ3τ
3
5 τ

4
6 ,

and λ(t) = τ5τ6.

Collecting everything together, we have shown that (29) is equal to

(31)

L(8s1 − 3, χ2
1ωπ)

4L(10s2 − 4, χ2
2)

2

L(8s1, χ2
1ωπ)L(8s1 − 1, χ2

1ωπ)L(8s2 − 2, χ2
1ωπ)

2L(10s2, χ2
2)L(10s2 − 2, χ2

2)
∫

Z\T

Kπ(t)
∏

i=1,3,5,6

(1 − χ′′
1(pτi))

∏

i=2,4

(1 − χ′′
2 (pτi))χ

′
1(τ2τ3τ

2
4 τ

2
5 τ

2
6 )χ′

2(τ1τ3τ
3
5 τ

4
6 )

χ′
3(τ5τ6)|τ

−4
1 τ−6

2 τ−10
3 τ−12

4 τ−3
5 τ−7

6 |
1
2 dt.

The value of Kπ(t) is given by the Casselman–Shalika [C-S] formula as fol-

lows: for i = 1, . . . , 6, let |τi| = q−ni , and let ̟i denote the ith fundamental

weight of Spin12(C). Let (n1, n2, n3, n4, n5, n6) denote the irreducible repre-

sentation of Spin12(C) with highest weight n1̟1 + · · · + n6̟6. Let a be an

integer such that a ≡ n5 + n6 mod 2. Then there is a unique representation of

GSpin12(C) such that Spin12(C) acts by (n1, n2, n3, n4, n5, n6) and every scalar

λ acts by λa. We denote this representation by (n1, n2, n3, n4, n5, n6; a). So St =

(1, 0, 0, 0, 0, 0; 0) and Spin = (0, 0, 0, 0, 1, 0; 1). Then for t as above with |τi| =

q−ni , the value of Kπ(t) is equal to the trace of (n1, n2, n3, n4, n5, n6;n5 + n6),

evaluated at the semisimple conjugacy class in GSpin12(C) associated to the

representation π. As before, we abuse notation and refer to this evaluation as

(n1, n2, n3, n4, n5, n6;n5 + n6) also.

Let x = χ2(p)q
−5s2+2, y = χ1(p)q

−4s1+3/2, w = ωπ(p). Observe that

(32) (n1, n2, n3, n4, n5, n6; a+ 2b) = wb(n1, n2, n3, n4, n5, n6; a).

By the Poincaré identity and work of Brion [Br], we have

(1 − y4w2)L(4s1 − 3/2, π ⊗ χ1, Spin) =

∞
∑

ℓ2,ℓ4,ℓ5=0

(0, ℓ2, 0, ℓ4, ℓ5, 0; 2ℓ2 + 4ℓ4 + ℓ5)y
2ℓ2+4ℓ4+ℓ5

(1 − (y2w)(ℓ5+1))

(1 − y2w)
,
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and

(1 − x2)L(5s2 − 2, π ⊗ χ2, St) =

∞
∑

ℓ1=0

(ℓ1, 0, 0, 0, 0, 0; 0)xℓ1.

The stated result is now reduced to the following identity:

(33)
∞
∑

ni=0

(n1, n2, n3, n4, n5, n6;n5 + n6)
∏

i=1,3,5,6

1 − (y2w)(ni+1)

1 − y2w

∏

i=2,4

1 − x2(ni+1)

1 − x2

xn1+n3+n6y2n2+2n3+4n4+n5+n6wn2+n3+2n4

=
∞
∑

ℓ1,ℓ2,ℓ4,ℓ5=0

(0, ℓ2, 0, ℓ4, ℓ5, 0; 2ℓ2 + 4ℓ4 + ℓ5)(ℓ1, 0, 0, 0, 0, 0; 0)

xℓ1y2ℓ2+4ℓ4+ℓ5
1 − (y2w)(ℓ5+1)

1 − y2w
.

If the central character of π is trivial, this reads

(34)

∞
∑

ni=0

(n1, n2, n3, n4, n5, n6)
∏

i=1,3,5,6

1 − y2(ni+1)

1 − y2

∏

i=2,4

1 − x2(ni+1)

1 − x2

xn1+n3+n6y2n2+2n3+4n4+n5+n6

=

∞
∑

ℓ1,ℓ2,ℓ4,ℓ5=0

(0, ℓ2, 0, ℓ4, ℓ5, 0)(ℓ1, 0, 0, 0, 0, 0)xℓ1y2ℓ2+4ℓ4+ℓ5
1 − y2(ℓ5+1)

1 − y2
.

We show first that (34) implies (33). To do this, we replace each of the

rational functions by a sum, e.g.

1 − (y2w)(ni+1)

1 − y2w
=

ni
∑

ki=0

y2kiwki .

We then use (32) to eliminate w entirely obtaining an identity of power series

in x and y alone. Then (33) amounts to a formula for the decomposition of

Syma(Spin) ⊗ Symb(St) into irreducibles, and (34) is the same formula for

restrictions to Spin12(C). The only information lost is the action of scalars,

and this is easily recovered: since scalars act trivially on St and by their

first powers on Spin, they will act by their ath powers on every constituent

of Syma(Spin)⊗ Symb(St). This is reflected in the power series as the prop-

erty that when we expand the rational functions and absorb the w’s, then every
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term on both sides has the property that the quantity after the semicolon is

equal to the exponent of y.

Next, we prove (34). To do this we make use of work of Black, King, and

Wybourne [B-K-W]. Note that the relevant results have also been reformu-

lated in the appendix to [Ga-H], so as to make the meaning of the “modifi-

cation rules” (see below) more transparent. In their paper, the representation

(n1, n2, n3, n4, n5, n6) is denoted by [ν]± if n5 ≡ n6 mod 2, and [∆; ν]± if not,

where ni = νi − νi+1, i = 1 to 5, ν6 = ⌊ |n5−n6|
2 ⌋, and the sign ± is equal to the

sign of n6−n5. (When n5−n6, we technically don’t have a sign, but may safely

put either. Here, it will be convenient to put “−”.) Thus we must break (34)

into two pieces corresponding to the “tensor” and “spinor” cases. The “tensor”

identity is

(35)

∞
∑

ni=0
n5≡n6 mod 2

(n1, n2, n3, n4, n5, n6)
∏

i=1,3,5,6

1 − y2(ni+1)

1 − y2

×
∏

i=2,4

1 − x2(ni+1)

1 − x2
xn1+n3+n6y2n2+2n3+4n4+n5+n6

=

∞
∑

ℓ1,ℓ2,ℓ4,ℓ5=0

(0, ℓ2, 0, ℓ4, 2ℓ5, 0)(ℓ1, 0, 0, 0, 0, 0)xℓ1y2ℓ2+4ℓ4+2ℓ5
1 − y2(2ℓ5+1)

1 − y2
,

while the spinor has n5 6≡ n6 mod 2 on the left side and 2ℓ5 + 1 replacing 2ℓ5

on the right side.

The relevant formula from [B-K-W] is

[λ] × [µ]− =
∑

η,ζ

[η; (λ/ζηB) · (µ/ζ)]−.

In our case, the value of µ is given by

(ℓ2 + ℓ4 + ℓ5)
2(ℓ4 + ℓ5)

2ℓ25,

while λ is the partition with one part ℓ1. So ζ and η must also have one part,

and the B just goes away. We get

ℓ1
∑

i=0

ℓ1−i
∑

j=0

[i; (ℓ1 − i− j) · (µ/j)]−.

We next note that

µ/j =
∑

a

σ(ℓ, a),
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where the sum is over triples a = (a2, a4, a6) of nonnegative integers satisfying

a2 ≤ ℓ2, a4 ≤ ℓ4, a6 ≤ ℓ5, a2 + a4 + a6 = j,

and

σ(a, ℓ) = ℓ2 + ℓ4 + ℓ5, ℓ2 − a2 + ℓ4 + ℓ5, ℓ4 + ℓ5, ℓ4 − a4 + ℓ5, ℓ5, ℓ5 − a6,

and hence that

(ℓ1 − i− j) · (µ/j) =
∑

a,b

τ(ℓ, a, b)

where the sum is over 10-tuples a, b = (a2, . . . , b7) of nonnegative integers sat-

isfying

a2 + · · · + b7 = ℓ1 − i, b2 ≤ a2, a2 + b3 ≤ ℓ2,

b4 ≤ a4, a4 + b5 ≤ ℓ4, b6 ≤ a6, a6 + b7 ≤ ℓ5,

and

τ(ℓ, a, b) = ℓ2 + ℓ4 + ℓ5 + b1, ℓ2 − a2 + b2 + ℓ4 + ℓ5,

ℓ4 + ℓ5 + b3, ℓ4 − a4 + b4 + ℓ5, ℓ5 + b5, ℓ5 − a6 + b6, b7.

Thus, the original sum is equal to

∑

ℓ,a,b

[

ℓ1 −
∑

k

ak −
∑

k

bk; τ(ℓ, a, b)

]

−

xℓ1y2ℓ2+4ℓ4+2ℓ5
1 − y2(2ℓ5+1)

1 − y2
,

where the sum is over 14-tuples (ℓ1, . . . , b7) of nonnegative integers, satisfying

the inequalities above, and the additional condition

ℓ1 −
∑

k

ak −
∑

k

bk ≥ 0.

Now, we must apply modification rules. As noted on p. 1581 of [B-K-W],

it is necessary to first apply the modification rule for U6 to obtain a pair of

partitions with six or fewer total parts, and then apply the one for SO12 to

obtain a single partition.

There are four possibilities:

1. If ℓ1 −
∑

k ak −
∑

k bk = b7 = 0 then no modification is necessary.

2. If ℓ1 −
∑

k ak−
∑

k bk = b7 = 1, then the U6 modification rule simply deletes

these two 1’s and introduces a minus sign. (These terms will cancel some of

the terms of the first type.) The result does not need to be modified further.



128 J. HUNDLEY Isr. J. Math.

3. If ℓ1−
∑

k ak−
∑

k bk > 0, and b7 = b6 = ℓ5−a6 = 0, then the U6 modification

rule leaves it alone, and the SO12 rule does not. We go into this in more

detail below, but the main thing here is that this will produce characters of

the form [ν]+, not [ν]−. Hence there is no cancellation between these, and

the ones coming from the first two.

4. In all other cases, the U6 modification rule gives 0.

Equation (35) thus splits further into two parts

(36)

∞
∑

ni=0
n5≡n6 mod 2

n5≥n6

(n1, n2, n3, n4, n5, n6)
∏

i=1,3,5,6

1 − y2(ni+1)

1 − y2

×
∏

i=2,4

1 − x2(ni+1)

1 − x2
xn1+n3+n6y2n2+2n3+4n4+n5+n6

=
∑

ℓ,a,b

(1)(0, ℓ2, 0, ℓ4, 2ℓ5, 0)(ℓ1, 0, 0, 0, 0, 0)xℓ1y2ℓ2+4ℓ4+2ℓ5
1 − y2(2ℓ5+1)

1 − y2

+
∑

ℓ,a,b

(2)(0, ℓ2, 0, ℓ4, 2ℓ5, 0)(ℓ1, 0, 0, 0, 0, 0)xℓ1y2ℓ2+4ℓ4+2ℓ5
1 − y2(2ℓ5+1)

1 − y2
,

and

(37)

∞
∑

ni=0
n5≡n6 mod 2

n5<n6

(n1, n2, n3, n4, n5, n6)
∏

i=1,3,5,6

1 − y2(ni+1)

1 − y2

×
∏

i=2,4

1 − x2(ni+1)

1 − x2
xn1+n3+n6y2n2+2n3+4n4+n5+n6

=
∑

ℓ,a,b

(3)(0, ℓ2, 0, ℓ4, 2ℓ5, 0)(ℓ1, 0, 0, 0, 0, 0)xℓ1y2ℓ2+4ℓ4+2ℓ5
1 − y2(2ℓ5+1)

1 − y2
,

where
∑

(i) denotes summation with the additional conditions given in case i

above. We turn first to (36). In each sum, we make the change of variables

a′2 = a2 − b2, a
′
4 = a4 − b4, a

′
6 = a6 − b6, ℓ

′
2 = ℓ2−a2 − b3 = ℓ2 −a

′
2− b2− b3,

ℓ′4 = ℓ4 − a4 − b5 = ℓ4 − a′4 − b4 − b5, ℓ′5 = ℓ5 − a6 = ℓ5 − a′6 − b6.

The conditions previously imposed are equivalent to the requirement that all

of these new variables be nonnegative. We collect the terms corresponding to
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ℓ, a, b such that τ(ℓ, a, b) = ν, where ν is given in terms of the ni as above.

Specifically, this amounts to

n1 = b1 + a′2, n2 = b2 + ℓ′2, n3 = b3 + a′4,

n4 = b4 + ℓ′4, n6 = b5 + a′6,
n5 − n6

2
= b6 + ℓ′5.

Now,

2ℓ2 + 4ℓ4 + 2ℓ5 = 2ℓ′2 + 2a′2 + 2b2 + 2b3 + 4ℓ′4 + 4a′4 + 4b4 + 4b5 + 2ℓ′5 + 2a′6 + 2b6

= 2n2 + 2n3 + 4n4 + n5 + n6 + 2a′2 + 2a′4 + 2b5.

In the first sum,

ℓ1 = a′2 +a′4 +a′6 + b1 +2b2 + b3 +2b4 + b5 +2b6 = n1 +n3 +n6 +2b2 +2b4 +2b6,

while in the second sum, it is equal to this same quantity plus 2. Also, the

first sum is over all a′, b, ℓ′ satisfying the equalities above, while the second

has the additional condition ℓ′5 > 0. We may express each sum as a sum over

a′2, a
′
4, a

′
6, b2, b4, b6. The shift b6 → b6 + 1 makes the exponents agree. Taking

the difference, leaves only the terms corresponding to b6 = 0. The summation

in a′2, a
′
4, b2, and b4 is straightforward, and yields

1 − x2(n2+1)

1 − x2

1 − x2(n4+1)

1 − x2

1 − y2(n1+1)

1 − y2

1 − y2(n3+1)

1 − y2
.

The summation in a′6 is

n6
∑

a′6=0

y2(n6−a
′
6)

1 − y2(n5−n6+2a′6)+1

1 − y2

= (1 − y2)−1
(

n6
∑

a′6=0

y2(n6−a
′
6) − y2(n5+1)

n6
∑

a′6=0

y2a′6

)

=
1 − y2(n5+1)

1 − y2

1 − y2(n6+1)

1 − y2
.

This completes the proof of (36).

We now turn to (37). We first compute the contribution to (37) corresponding

to a fixed pair {s̄; τ}. Let mi = τi − τi+1, for 1 ≤ i ≤ 4. And let a′i, ℓ
′
i, i = 2, 4, 6

be defined as before The sum over triples ℓ, a, b, such that ℓ5−a6 = b6 = b7 = 0
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and {ℓ1 −
∑

k ak −
∑

k bk; τ(ℓ, a, b)} = {s̄, τ} is equal to the sum over ℓ, a, b

subject to the following conditions

a′2 + b1 = m1, ℓ′2 + b2 = m2, a′4 + b3 = m3, ℓ′4 + b4 = m4, ℓ′5 + b5 = τ5,

ℓ1 = s+ ℓ5 + a′2 + a′4 + b1 +2b2 + b3 +2b4 + b5 = s+m1 +m3 + τ5 +2b2 +2b4.

Furthermore,

2ℓ2 + 4ℓ4 + ℓ5 = 2m2 + 2m3 + 4m4 + 4τ5 + 2a′2 + 2a′4 − 2ℓ5.

The sums on b2, b4, a
′
2 and a′4 yield

1 − x2(m2+1)

1 − x2

1 − x2(m4+1)

1 − x2

1 − y2(m1+1)

1 − y2

1 − y2(m3+1)

1 − y2
,

and

τ5
∑

ℓ5=0

y−2ℓ5
1 − y2(2ℓ5+1)

1 − y2
= (1 − y2)−1

( τ5
∑

ℓ5=0

y−2ℓ5 + y2
τ5
∑

ℓ5=0

y2ℓ5

)

= y−2τ5
(1 − y2(τ5+1)

1 − y2

)2

,

so overall we get

(38) xm1+m3+τ5+sy2m2+2m3+4m4+2τ5
1 − x2(m2+1)

1 − x2

1 − x2(m4+1)

1 − x2

×
1 − y2(m1+1)

1 − y2

1 − y2(m3+1)

1 − y2

(

1 − y2(τ5+1)

1 − y2

)2

.

There are six pairs {s; τ} such that under the SO12 modification rule [s; τ ]− =

±[ν]+, where ν is associated to ni as above. They are:

{ν6; ν1, ν2, ν3, ν4, ν5}

{ν5 + 1; ν1, ν2, ν3, ν4, ν6 − 1}

{ν4 + 2; ν1, ν2, ν3, ν5 − 1, ν6 − 1}

{ν3 + 3; ν1, ν2, ν4 − 1, ν5 − 1, ν6 − 1}

{ν2 + 4; ν1, ν3 − 1, ν4 − 1, ν5 − 1, ν6 − 1}

{ν1 + 5; ν2 − 1, ν3 − 1, ν4 − 1, ν5 − 1, ν6 − 1}
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The signs ± alternate, starting with plus. The corresponding values of mi, τ5,

m1 +m3 + s, and 2m2 + 2m3 + 4m4 + 2τ5 are as follows:

m τ5 m1 + m3 + τ5 + s 2m2 + 2m3 + 4m4 + 2τ5

n1, n2, n3, n4
n6+n5

2
n1 + n3 + n6 2n2 + 2n3 + 4n4 + n5 + n6

n1, n2, n3, n4 + n5 + 1
n6−n5

2
− 1 n1 + n3 + n6 2n2 + 2n3 + 4n4 + 3n5 + n6 + 2

n1, n2, n3 + n4 + 1, n5
n6−n5

2
− 1 n1 + n3 + 2n4 + n6 + 2 2n2 + 2n3 + 2n4 + 3n5 + n6

n1, n2 + n3 + 1, n4, n5
n6−n5

2
− 1 n1 + n3 + 2n4 + n6 + 2 2n2 + 2n3 + 2n4 + 3n5 + n6

n1 + n2 + 1, n3, n4, n5
n6−n5

2
− 1

n1 + 2n2 + n3 + 2n4

+ n6 + 4 2n3 + 2n4 + 3n5 + n6 − 2

n2, n3, n4, n5
n6−n5

2
− 1

n1 + 2n2 + n3 + 2n4

+ n6 + 4 2n3 + 2n4 + 3n5 + n6 − 2

Now we plug these six sets of values into (38), and introduce the notation

Xi = xni , Yi = yni . The identity (37) is reduced to the following equality of

polynomials:

(1 −X2
2x

2)(1 −X2
4x

2)(1 − Y 2
1 y

2)(1 − Y 2
3 y

2)(1 − Y5Y6y
2)2Y 2

2 Y
2
4

− (1 −X2
2x

2)(1 −X2
4X

2
5x

4)(1 − Y 2
1 y

2)(1 − Y 2
3 y

2)(1 − Y −1
5 Y6)

2Y 2
2 Y

2
4 Y

2
5 y

2

+ (1 −X2
2x

2)(1 −X2
5x

2)(1 − Y 2
1 y

2)(1 − Y 2
3 Y

2
4 y

4)(1 − Y −1
5 Y6)

2X2
4x

2Y 2
2 Y

2
5

− (1 −X2
2X

2
3x

4)(1 −X2
5x

2)(1 − Y 2
1 y

2)(1 − Y 2
4 y

2)(1 − Y −1
5 Y6)

2X2
4x

2Y 2
2 Y

2
5

+ (1 −X2
3x

2)(1 −X2
5x

2)(1 − Y 2
1 Y

2
2 y

4)(1 − Y 2
4 y

2)(1 − Y −1
5 Y6)

2X2
2X

2
4x

4Y 2
5 y

−2

− (1 −X2
3x

2)(1 −X2
5x

2)(1 − Y 2
2 y

2)(1 − Y 2
4 y

2)(1 − Y −1
5 Y6)

2X2
2X

2
4x

4Y 2
5 y

−2

= (1 −X2
2x

2)(1 −X2
4x

2)(1 − Y 2
1 y

2)(1 − Y 2
3 y

2)(1 − Y 2
5 y

2)(1 − Y 2
6 y

2)Y 2
2 Y

2
4 .

This is not hard to check: if one starts at the bottom and works one’s way up,

then at each stage, the sum only differs from the next term to be added in a

few places. For example, the difference of the last two terms consists of a large

part that is the same in both:

(1 −X2
3x

2)(1 −X2
5x

2)(1 − Y 2
4 y

2)(1 − Y −1
5 Y6)

2X2
2X

2
4x

4Y 2
5 y

−2

times a simple difference:

((1 − Y 2
1 Y

2
2 y

4) − (1 − Y 2
2 y

2)) = Y 2
2 y

2(1 − Y 2
1 y

2).

We get

(1 −X2
3x

2)(1 −X2
5x

2)(1 − Y 2
1 y

2)(1 − Y 2
4 y

2)(1 − Y −1
5 Y6)

2X2
2X

2
4x

4Y 2
2 Y

2
5 ,

which now has many terms in common with the third-to-last term, and so on.

The “spinor” case is handled similarly. (Note that the SO12 modification rule

is different in the “spinor case.”)
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